

M6313 硬件设计指南

GSM/GPRS/GNSS 系列

版 本: V4.0

日期: 2018-09-11

关于文档

修订记录

版本	日期	作者	描述
V1.0	2018-04-23	黄俊骁	新建
V2.0	2018-05-04	黄俊骁	修改部分测试数据
V3.0	2018-07-03	黄俊骁	修改图 20;新增自适应波特率描述;
			新增有源天线推荐型号
V4.0	2018-09-11	黄俊骁	新增串口应用参考电路:图 21~图 23;
			修改 GNSS 部分退出待机模式指令;
			完善和修改一些细节描述

目录

关	于文档	2 -
目	录	3 -
表	·格索引	6 -
冬]片索引	8 -
1	简介	- 10 -
	1.1 安全须知	
2	综 述	- 11 -
	2.1 功能概述	- 11 -
	2.2 系统框图	
	2.3 评估板	- 14 -
3	应用接口	- 15 -
	3.1 管脚描述	- 15 -
	3.2 应用模式	- 21 -
	3.3 工作模式	
	3.3.1 GSM/GPRS 工作模式	
	3.4 电源供电	
	3.4.1 电源特性	
	3.4.2 减少电压跌落	- 26 -
	3.4.3 供申参考电路	- 27 -

	3.5 开关机	- 28 -
	3.5.1 开机	- 28 -
	3.5.2 关机	- 29 -
	3.6 串口	- 30 -
	3.6.1 主串口	
	3.6.2 调试串口	- 32 -
	3.6.3 辅助串口与 GNSS 串口	- 33 -
	3.6.4 串口应用	- 34 -
	3.7 SIM 卡接口	- 36 -
	3.8 SD 接口 (TBD)	- 38 -
	3.9 ADC 接口	- 38 -
	3.10 音频接口	- 38 -
	3.11 网络状态指示接口	
4	天线接口	- 41 -
	- AND	
	4.1 GSM 天线接口	
	4.1 GSM 天线接口 4.1.1 射频参考电路	- 41 -
	4.1 GSM 天线接口	- 41 - - 42 -
	4.1 GSM 天线接口	- 41 - - 42 - - 42 -
	4.1 GSM 天线接口	- 41 - - 42 - - 42 -
	4.1 GSM 天线接口	- 41 - - 42 - - 42 - - 42 -
	4.1 GSM 天线接口	- 41 - - 42 - - 42 - - 42 - - 43 -
	4.1 GSM 天线接口	- 41 - - 42 - - 42 - - 42 - - 43 -
	4.1 GSM 天线接口	- 41 - - 42 - - 42 - - 42 - - 43 - - 43 -
	4.1 GSM 天线接口 4.1.1 射频参考电路 4.1.2 RF 输出功率 4.1.3 RF 接收灵敏度 4.1.4 工作频率 4.1.5 推荐焊接方式 4.2 GNSS 天线接口 4.2.1 天线规格	- 41 - - 42 - - 42 - - 43 - - 43 - - 43 -
	4.1 GSM 天线接口 4.1.1 射频参考电路 4.1.2 RF 输出功率 4.1.3 RF 接收灵敏度 4.1.4 工作频率 4.1.5 推荐焊接方式 4.2 GNSS 天线接口 4.2.1 天线规格 4.2.2 有源天线参考设计	- 41 - - 42 - - 42 - - 43 - - 43 - - 43 - - 44 -
	4.1 GSM 天线接口 4.1.1 射频参考电路 4.1.2 RF 输出功率 4.1.3 RF 接收灵敏度 4.1.4 工作频率 4.1.5 推荐焊接方式 4.2 GNSS 天线接口 4.2.1 天线规格 4.2.2 有源天线参考设计 4.2.3 无源天线参考设计	- 41 - - 42 - - 42 - - 43 - - 43 - - 44 - - 44 -

	5.3 电源额定值	46 -
	5.4 耗流	48 -
	5.5 静电防护	49 -
6	机械尺寸	- 50 -
	6.1 模组尺寸	50 -
	6.2 推荐封装	51 -
	6.3 模组视图	51 -
7	存储、生产和包装	- 52 -
	7.1 存储	52 -
	7.2 生产焊接	52 -
	7.3 包装	53 -
8	附录 A 参考文档及术语缩写	- 54 -
9	附录 B GPRS 编码方案	- 57 -
10) 附录 C GPRS 多时隙	- 58 -

表格索引

表	1 产品特性(GSM/GPRS 部分)	- 11 -
表	2 编码格式和耦合时最大网络数据速率	- 13 -
表	3 产品特性 (GNSS 部分)	- 13 -
表	4 接口管脚定义	- 16 -
表	5 GSM/GPRS 工作模式	- 22 -
表	6 待机模式操作指令	- 24 -
表	7 备份模式操作指令	- 25 -
表	8 串口逻辑电平	- 30 -
表	9 串口引脚定义	- 30 -
表	10 SIM 接口引脚定义	- 36 -
表	11 ADC 接口引脚定义	- 38 -
	12 ADC 特性	
	13 音频接口引脚定义	
表	14 网络状态指示对应表	- 40 -
表	15 GSM 天线接口引脚定义	- 41 -
表	16 RF 传导功率	- 42 -
表	17 RF 传导灵敏度	- 42 -
表	18 GSM 工作频率	- 43 -
表	19 GNSS 天线接口引脚定义	- 43 -
表	20 GNSS 天线规格	- 43 -
表	21 绝对最大值	- 46 -
表	22 模组工作温度	- 46 -
表	23 GSM 部分电源额定值(GNSS 部分关闭)	- 46 -
表	24 GNSS 部分电源额定值	- 48 -
表	25 GSM 部分耗流 (GNSS 部分关闭)	- 48 -
表	26 ESD 性能参数 (温度: 25℃, 湿度: 45%)	- 49 -
表	27 包装规格	- 53 -
表	28 参考文档	- 54 -
表	29 术语缩写	- 54 -

表	30	编码方案	- 57
表	31	不同等级的多时隙分配节选表	- 58

图片索引

图	1 系统框图	14 -
图	2 外观图	15 -
图	3 管脚分配图	16 -
图	4 GNSS 独立串口方案	22 -
图	5 GNSS 集成串口方案	22 -
图	6 GSM 发射时的电压电流波形图	25 -
图	7 VBAT 输入参考电路	26 -
图	8 GNSS_VCC 输入参考电路	26 -
图	9 VBAT 供电输入参考电路	27 -
图	10 GNSS_VCC 供电输入参考电路	27 -
图	11 GNSS Backup Domain 电路框图	28 -
图	12 开集驱动电路开机参考电路	
图	13 按钮开机参考电路	29 -
	14 三线制主串口连接图	
图	15 带硬件流控主串口连接图	32 -
图	16 全功能主串口连接图	
图	17 调试串口连接图	33 -
图	18 GNSS 独立串口方案连接图	33 -
图	19 GNSS 集成串口方案连接图	34 -
图	20 3.3V 串口电平转换	34 -
图	21 二极管隔离电路	35 -
图	22 模组 TXD 5V 电平匹配电路	35 -
图	23 模组 RXD 5V 电平匹配电路	35 -
图	24 SIM1 接口参考电路	37 -
图	25 SIM2 接口参考电路	37 -
图	26 麦克风接口参考电路	39 -
图	27 听筒接口参考电路	39 -
图	28 扬声器接口参考电路	40 -
图	29 网络状态指示接口参考电路	40 -

图	30 GSM 天线接口参考电路	- 41 -
图	31 GNSS 有源天线参考电路	- 44 -
图	32 GNSS 无源天线参考电路	- 45 -
图	33 模组俯视及侧视尺寸图(单位: mm)	- 50 -
图	34 模组底层尺寸图(单位: mm)	- 50 -
图	35 推荐封装(单位: mm)	- 51 -
图	36 模组顶视及俯视图	- 51 -
图	37 印膏图	- 53 -
图	38 炉温曲线	- 53 -
图	39 CS-1、CS-2 和 CS-3 射频协议块结构	- 57 -
图	40 CS-4 射频协议块结构	- 57 -

1 简介

本文档详细介绍了 M6313 模组的硬件技术参数,接口电气特性,射频性能指标和机械特性。 该文档能够帮助客户理解 M6313 模组,指导客户进行快速应用和产品开发。

1.1 安全须知

通过遵循以下安全原则, 可确保个人安全并有助于保护产品和工作环境免遭潜在损坏。

道路行驶安全第一! 当你开车时,请勿使用手持移动终端设备,除非其有免提功能。 请停车,再打电话!

登机前请关闭移动终端设备。移动终端的无线功能在飞机上禁止开启用以防止 对飞 机通讯系统的干扰。忽略该提示项可能会导致飞行安全,甚至触犯法律。

当在医院或健康看护场所,注意是否有移动终端设备使用限制。RF干扰会导致医疗设备运行失常,因此可能需要关闭移动终端设备。

SOS

移动终端设备并不保障任何情况下都能进行有效连接,例如在移动终端设备没有话 费或 SIM 无效。当你在紧急情况下遇见以上情况,请记住使用紧急呼叫,同时保证您的设备开机并且处于信号强度足够的区域。

您的移动终端设备在开机时会接收和发射射频信号。当靠近电视,收音机电脑或者 其他电子设备时都会产生射频干扰。

请将移动终端设备远离易燃气体。当你靠近加油站,油库,化工厂或爆炸作业场所,请关闭移动终端设备。在任何有潜在爆炸危险场所操作电子设备都有安全隐患。

2 综述

M6313 模组是一款 GSM/GPRS/GNSS 无线通信模组,其 GSM 部分的工作频段为: GSM850/EGSM900/DCS1800/PCS1900, GNSS 支持 GPS/BDS 定位系统。M6313 模组支持 GNSS 独立串口方案和 GNSS 集成串口方案,满足客户不同需求的开发。

M6313 模组支持 GPRS Multi-slot Classes 1~12, GPRS 编码格式 CS-1、CS-2、CS-3、CS-4。 要了解更多关于 GPRS Multi-slot Classes 以及 GPRS 编码的信息,请参考附录 B 和附录 C。

M6313 模组是一款基于 LCC+LGA 焊盘的贴片式模块,尺寸仅有 18.7mm*16mm*2.7mm,可以广泛应用于车载设备、定位设备、智能抄表、可穿戴设备、共享设备等领域。

M6313 模组支持 AT 命令扩展,可以实现客户个性化的定制方案。同时,M6313 模组内嵌TCP/UDP、FTP、PPP等数据传输协议,用户可通过 AT 命令使用这些协议。

2.1 功能概述

表 1 产品特性 (GSM/GPRS 部分)

类型	描述	
供电	VBAT 供电电压范围: 3.4~4.2V	
	典型供电电压: 3.8V	
省电	SLEEP 模式下电流:1.18mA @ BS_PA_MFRMS=5	
温度范围	▶ 正常工作温度: -40℃ ~+85℃[1]	
	▶ 存储温度: -45℃ ~+90℃	
频段	▶ 四频: GSM850、EGSM900、DCS1800、PCS1900	
	▶ 模块可自动搜寻工作频率	
	▶ 模块可通过 AT 命令选择频段	
	▶ 符合 GSM Phase 2/2+	
发射功率	Class 4 (2W): GSM850、EGSM900	
	Class 1 (1W): DCS1800、PCS1900	

GPRS 连接特性 ► GPRS multi-slot class 12 (默认)		
	▶ GPRS multi-slot class 1~12(可配置)	
	► GPRS mobile station class B	
GPRS 数据特性	▶ GPRS 数据下行传输速率: 最大 85.6 kbps	
	▶ GPRS 数据上行传输速率: 最大 85.6 kbps	
	► 编码格式: CS-1、CS-2、CS-3、CS-4	
	▶ 内嵌协议: TCP/UDP、FTP 等	
	▶ 支持通常用于 PPP 连接的 PAP(密码验证协议)协议	
	▶ 支持通常用于 CHAP (询问握手认证协议) 协议	
	▶ 支持非结构化补充数据业务(USSD)	
短信息 (SMS)	▶ 支持 Text 和 PDU 模式	
	► 短消息存储设备: SIM 卡	
SIM 卡接口	支持 SIM 卡: 1.8V/3V	
串口特性	▶ 主串口:	
	全功能串口	
	用于 AT 命令发送、GPRS 数据传输	
	在 GNSS 集成串口方案中,可用 AT 指令读取 NEMA 报文	
	波特率:4800bps~115200bps,默认为115200bps	
	▶ 调试串口:	
	两线: DBG_TXD、DBG_RXD	
	仅用于软件调试	
	波特率: 921600bps	
	▶ 辅助串口:	
	两线: TXD_AUX、RXD_AUX	
	在 GNSS 集成串口方案中,用于与 GNSS 串口通信	
波特率: 4800bps~115200bps, 默认为 9600bps		
天线接口特征阻抗	50 欧姆	
物理特征	尺寸: 18.7mm*16mm*2.7mm	
固件升级 串口升级		

备注

[1] 当工作在-35℃~+75℃时,模组的相关性能满足 3GPP 标准的要求; 当工作在-35℃~-40℃时或+75℃~+85℃时,模组仍能正常工作, 但某些射频指标可能会不满足 3GPP 标准的要求。

表 2 编码格式和耦合时最大网络数据速率

编码格式	1 Timeslot	2 Timeslot	4 Timeslot
CS-1	9.05 kbps	18.1 kbps	36.2 kbps
CS-2	13.4 kbps	26.8 kbps	53.6 kbps
CS-3	15.6 kbps	31.2 kbps	62.4 kbps
CS-4	21.4 kbps	42.8 kbps	85.6 kbps

表 3 产品特性 (GNSS 部分)

类型	描述	
GNSS 制式	GPS+BeiDou	
供电	GNSS_VCC 供电电压范围: 2.8~4.3V	
	典型供电电压: 3.3V	
接收灵敏度	捕获灵敏度: -148 dBm	
	跟踪灵敏度: -166 dBm	
启动时间(TTFF)	冷启动: <25s	
	温启动: <2.5s	
	热启动: <1s	
更新频率	默认为 1Hz,最大为 5Hz	
定位精度	2.5m CEP	
速度精度	0.1 m/s	
串口特性	▶ 两线: GNSS_TXD、GNSS_RXD	
	► 在 GNSS 独立串口方案中,与外部 MCU 通信	
	▶ 在 GNSS 集成串口方案中,与模组辅助串口通信	
	▶ 波特率: 4800bps~921600bps, 默认为 9600bps	

2.2 系统框图

M6313 模组硬件系统框图如图 1 所示, 主要包含如下功能模块:

- 射频部分
- 基带
- PMU
- GNSS 部分
- 接口:电源接口、天线接口、音频接口、ADC接口、通用串口、SIM卡接口、SD接口

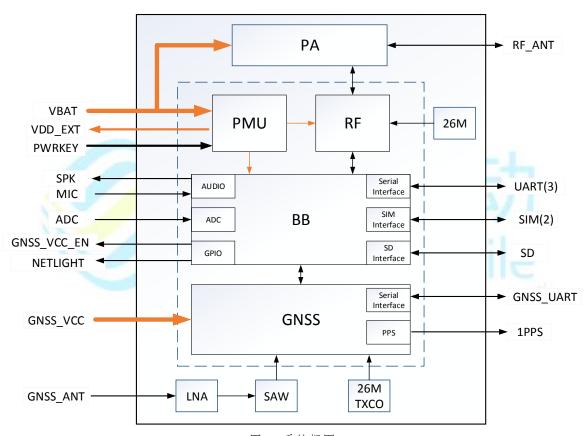


图 1 系统框图

2.3 评估板

为了有助于测试及使用 M6313 模块,中移物联网公司提供一套评估板。

3 应用接口

本章主要描述 M6313 的应用接口, 主要包括:

- ▶ 电源接口
- ▶ 开关机接口
- ▶ 通用串口
- ▶ 音频接口
- ➤ SIM 卡接口
- ➤ ADC 接口
- ➤ SD接口(TBD)
- ▶ 网络状态指示接口

3.1 管脚描述

M6313 模组采用 LGA+LCC 的接口方式,共有 68 个引脚焊盘。模组的外观图如图 2 所示,模组上管脚的排布顺序如图 3 所示。

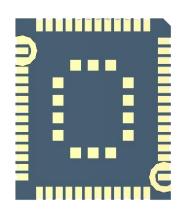


图 2 外观图

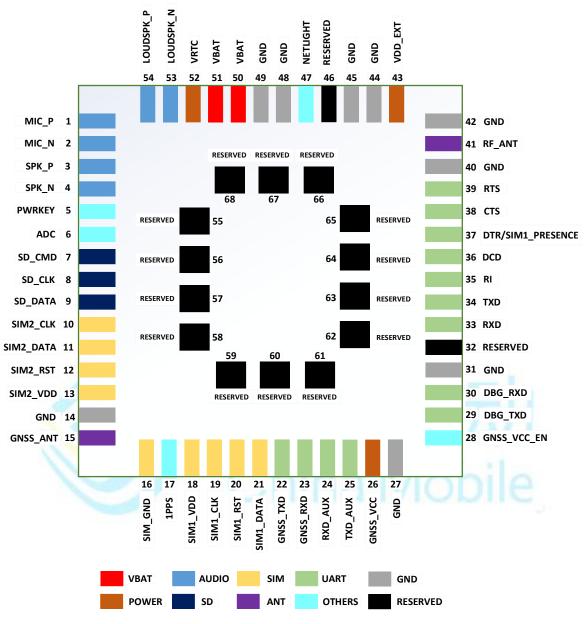


图 3 管脚分配图

备注: 预留引脚请悬空

表 4 接口管脚定义

电源接口					
引脚号	引脚名	I/O	描述	DC 特性	备注

50, 51	VBAT	ΡΙ	模组主电源	Vmax=4.2V	电源必须能够提供
			3.4V~4.2V	Vmin=3.4V	2A 的电流
				Vnorm=3.8V	
26	GNSS_VCC	ΡΙ	GNSS 电源	Vmax=4.3V	电源必须能够提供
			2.8 ~ 4.3V	Vmin=2.8V	150mA 的电流
				Vnorm=3.3V	
43	VDD_EXT	РО	模组输出电源	Vmax=3V	1. 不用则悬空。
			2.8V	Vmin=2.7V	2. 给外部供电时推
				Vnorm=2.8V	荐并联一个 2.2~ 4.7
				Imax=20mA	uF 的旁路电容。
52	VRTC	Ю			悬空
14,27,31,	GND	-	地	-	-
40,42,44					
45,48,49					

				7 7/7 -			
开关机接口	开关机接口						
引脚号	引脚名	I/O	描述	DC 特性	备注		
5	PWRKEY	I	关机状态拉低	VILmax=0.1×VBAT			
			PWRKEY 引脚	VIHmin=0.6×VBAT	le		
			大于2S开机;	VIHmax=3.6V	201		
			开机状态拉低				
			PWRKEY 引脚				
			大于 1S 关机				

网络状态和	网络状态指示接口							
引脚号	引脚名	I/O	描述	DC 特性	备注			
47	NETLIGHT	О	网络状态指示	VOHmin=	不用则悬空			
				0.85×VDD_EXT				
				VOLmax=				
				0.15×VDD_EXT				

主串口								
引脚号	引脚名	I/O	描述	DC 特性	备注			
33	RXD	I	模组接收数据		默认波特率			
34	TXD	О	模组发送数据		115200bps			
34	TAD	O	· 大型人 ~ 妖师	VILmin=0V				
35	RI	О	输出振铃指示	VILmax=0.25×VDD_EXT				
36	DCD	О	输出载波检测	VIHmin=0.75×VDD_EXT				
37	DTR	I	数据终端准备	VIHmax= VDD_EXT+0.3	了田剛 县☆			
37	DIK	1	完成	VOLTON 0.15 AVDD EXT	不用则悬空			
38	CTS	О	发送清除	VOLmax=0.15×VDD_EXT				
		Ŭ	>c _					
39	RTS	Ι	发送请求					
调试串口								
引脚号	引脚名	I/O	描述	DC 特性	备注			
30	DBG_RXD	I	调试串口接收	同上	默认波特率			
29	DBG_TXD	O	调试串口发送	上一个	921600bps			
辅助串口								
引脚号	引脚名	I/O	描述	DC 特性	备注			
24	RXD_AUX	I	辅助串口接收	同上	默认波特率			
25	TXD_AUX	О	辅助串口发送		9600bps			
GNSS 隼	7							
引脚号	引脚名	I/O	描述	DC 特性	备注			
23	GNSS_RXD	I	GNSS 串口接收	VILmin=-0.3V	默认波特率			
				VILmax=0.7V	9600bps			
22	GNSS_TXD	О	GNSS 串口发送	VIHmin=2.1V				
	51,55_1110			VIHmax=3.1V				
				VOHmin=2.4V				
				VOLmax =0.42V				

SIM 卡接口

引脚号	引脚名	I/O	描述	DC 特性	备注
18	SIM1_VDD	O	SIM 卡	1.8V/3V	模组自动选择
13	SIM2_VDD		供电电压		
19	SIM1_CLK	O	SIM 卡时钟线	3V:	
10	SIM2_CLK			VOLmax=0.4V	
				VOHmin=0.9×SIM_VDD	
				1.8V:	
				VOLmax=0.12×SIM_VDD	
				VOHmin=0.9×SIM_VDD	
20	SIM1_RST	O	SIM 卡复位线	3V:	
12	SIM2_RST			VOLmax=0.36V	
				VOHmin=0.9×SIM_VDD	
				1.8V:	
				VOLmax=0.2×SIM_VDD	CD (上拉口井
			1 1	VOHmin=0.9×SIM_VDD	SIM 卡接口建
21	SIM1_DATA	Ю	SIM 卡数据线,	3V:	议使用 TVS 管 ESD 保护,
11	SIM2_DATA		内部已上拉	VILmax=0.4V	ESD 保护, SIM 卡座到
×		N		VIHmin=SIM_VDD-0.4V	模块最长布线
		P	Chi	VOLmax=0.4V	不要超过 200
			- 111	VOHmin=SIM_VDD-0.4V	201
				1.8V:	mm 。
				VILmax=0.15×SIM_VDD	
				VIHmin=SIM_VDD-0.4V	
				VOLmax=0.15×SIM_VDD	
				VOHmin=SIM_VDD-0.4V	
16	SIM_GND	-	地		
37	SIM1_PRESENCE	I	SIM卡1检测线	VILmin=0V	
				VILmax=0.25×VDD_EXT	
				VIHmin=0.75×VDD_EXT	
				VIHmax=	
				VDD_EXT+0.3V	

SD 接口	SD 接口						
引脚号	引脚名	I/O	描述	DC 特性	备注		
7	SD_CMD	О	SD 命令线	VILmin=0V			
				VILmax=0.25×VDD_EXT			
8	SD_CLK	O	SD 时钟线	VIHmin=0.75×VDD_EXT	不用则悬空		
				VIHmax= VDD_EXT+0.3			
9	SD_DATA	Ю	SD 数据线	VOHmin=0.85×VDD_EXT			
				VOLmax=0.15×VDD_EXT			

音频接口	音频接口					
引脚号	引脚名	I/O	描述	DC 特性	备注	
1	MIC_P	AI	麦克输入正	-		
2	MIC_N	AI	麦克输入负	-		
3	SPK_P	AO	听筒输出正	-	不用则悬空	
4	SPK_N	AO	听筒输出负	コエクー	-1-	
54	LOUDSPK_P	AO	喇叭输出正	マ 不分 7.		
53	LOUDSPK_N	AO	喇叭输出负	7 12 6	15	

ADC 接口					
引脚号	引脚名	I/O	描述	DC 特性	备注
6	ADC	I	数模转换	电压输入范围:	不用则悬空
				0-1.75V	

天线接口						
引脚号	引脚名	I/O	描述	DC 特性	备注	
15	GNSS_ANT	Ю	GNSS 天线接口	50 欧姆特性阻抗		
					不用则悬空	
41	RF_ANT	Ю	GSM 天线接口	50 欧姆特性阻抗	1,4,4,4	

其他接口	其他接口					
引脚号	引脚名	I/O	描述	DC 特性	备注	
17	1PPS	O	模组完成定	VOHmin=2.4V	不用则悬空	
			位后每秒输	VOHmax=2.8V		
			出一个脉冲	VOLmax=0.42V		
28	GNSS_VCC_EN	O	GNSS 外部	VOHmin=0.85×VDD_EXT		
			供电使能	VOLmax=0.15×VDD_EXT		
32, 46,	RESERVED	-	-	-	悬空	
55 ~ 68						

备注

- PI 表示电源输入管脚, PO 表示电源输出管脚; I 表示数字信号输入管脚, O 表示数字信号输出管脚, IO 表示数字输入输出管脚; AI 表示模拟信号输入管脚, AO 表示模拟信号输出管脚。
- VIL 表示低电平输入电压, VIH 表示高电平输入电压; VOL 表示低电平输出电压; VOH 表示高电平输出电压。
- RESERVED 表示功能暂未定义。
- 所有的输入输出方向定义的前提是以模组作为主设备。

3.2 应用模式

M6313 模组在 GNSS 部分的使用上为用户提供了两种方案,以适应不同需求的应用和开发。

1、GNSS 独立串口方案

在该方案中,模组 GNSS 部分通过 GNSS 串口与 MCU 通信,完成 NEMA 报文的输出;同时模组 GSM/GPRS 部分通过主串口与 MCU 通信,完成 AT 指令的发送以及数据的传输等。方案硬件连接示意图如图 4 所示:

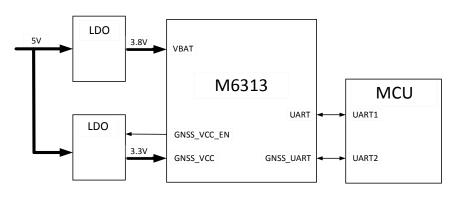
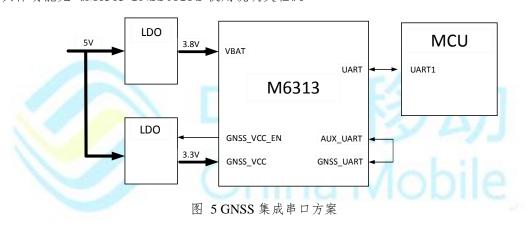



图 4 GNSS 独立串口方案

2、GNSS集成串口方案

在该方案中,模组 GNSS 串口与辅助串口相连,用户通过主串口与 MCU 通信,完成 AT 指令的发送,数据的传输和 NEMA 报文的输出等。在该模式下,GNSS 部分可使用 EPO 技术和秒定,具体功能见《M6313 GNSS AGPS 使用说明文档》。

3.3 工作模式

3.3.1 GSM/GPRS 工作模式

通过下表简述模组的 GSM/GPRS 工作模式。

表 5 GSM/GPRS 工作模式

模式	功能	描述
	GSM/GPRS	模组可通过配置进入睡眠模式,模组的耗流减小到很低
	SLEEP	的水平。来电、短信、串口通信能够唤醒模块。

正常工作	GSM IDLE	软件正常运行。模块注册上 GSM 网络,能够接收和发送。此模式下,模块功耗取决于功率等级的配置。		
	GSM TALK	GSM 网络注册状态正常。此模式下,模块功耗取决于 功率等级的配置,动态 DTX 控制以及射频工作频率。		
		\mathcal{N}		
	GPRS IDLE	模组没有注册到 GPRS 网络,不能通过 GPRS 信道访问。		
	GPRS	模组注册上 GPRS 网络,但没有激活 PDP 上下文。		
	STANDBY			
	GPRS	PDP 上下文成功激活,但无数据传送,此状态下模组		
	READY	可以发送或接收数据。		
	GPRS DATA	GPRS 数据传送。此模式下,模块的功耗取决于功率		
		控制等级,射频工作频率以及 GPRS 多时隙配置。		
关机模式[1]	在 VBAT 正常上电情况下,通过发送"AT+CPOF"命令,或使用 PWRKEY			
	引脚来实现正常关机。			
	人 I D I T I L I L I			
最少功能模式	在 VBAT 正常上电情况下,使用"AT+CFUN=0"命令可以将模块设置成最			
	少功能模式。此模式下,射频不工作,或SIM卡不工作,或是两者都不工			
(保持供电电压)	作,但是串口仍然可以访问。此模式下功耗非常低。			

备注

[1] 建议仅当通过"AT+CPOF"命令或使用 PWRKEY 引脚关机失败时, 才可使用外部断电来关机。

1、睡眠模式

模组可通过 AT+QSCLK=1 使能睡眠模式,设置成功后,可通过 DTR 引脚控制 GSM 部分进入或退出睡眠模式。当 DTR 引脚置高,且无中断产生,GSM 部分自动进入睡眠模式。在该模式下,GSM 部分可接收来电、短信及 GPRS 下行数据,但串口不可使用。

模组可通过 AT+QSCLK=0 禁止睡眠模式,设置成功后,模组不能进入睡眠模式。模组可通过以下方式唤醒睡眠模式:

- (1) 将 DTR 引脚拉低 20ms;
- (2) 来电或收到短信或收到下行数据。

模组也可通过 AT+QSCLK=2 使能睡眠模式,设置成功后,串口 5s 无数据交互,模组进入睡

眠模式。串口发送数据或来电或收到短信或收到下行数据, 可以唤醒模组。

2、最少功能模式

模组在最少功能模式下,RF功能将会关闭,串口可用。模组可通过AT+CFUN=<fun>设置最少功能模式,<fun>参数可为0、1、4。

- 0: 最少功能模式 (关闭 RF 和 SIM)
- 1: 全功能 (默认)
- 4: 关闭 RF 发送和接收功能

3.3.2 GNSS 工作模式

1、全功能模式(Full on)

GNSS_VCC 供电正常时, GNSS 部分进入全功能模式, 此时开启捕获和跟踪功能。在捕获模式下,模组开始搜索可见卫星,并完成定位; 捕获后模组自动进入跟踪模式, 完成信号的跟踪、解扩和解调。

2、待机模式 (Standby)

GNSS 部分可进入待机模式,在该模式下,GNSS 停止搜索卫星,TCXO 关闭。

GNSS 部分退出待机模式后,将使用内部辅助信息(GNSS 时间、星历表、最后的位置等)确保热启动或温启动时有最短的 TTFF。

进入或退出待机模式的指令如下表:

表 6 待机模式操作指令

应用模式	应用串口	待机模式	指令	
独立串口模式	GNSS 串口	进入	\$PGKC051,1*36\r\n	
		退出	\$PGKC051,0*37\r\n	
集成串口模式	主串口	进入	AT+QGNSSCMD=0," \$PGKC051,1*36"	
		退出	AT+QGNSSCMD=0, "\$PGKC051,0*37"	

3、备份模式(Backup)

GNSS 部分可进入备份模式,在该模式下,GNSS 停止搜索卫星,Backup Domain 中的后备存储器是正常工作的,其中包含了必要的GNSS 信息(快速启动信息和少量用户配置参数),此时GNSS 部分的电流更低。

进入或退出备份模式的指令(仅集成串口可用)如下表:

表 7 备份模式操作指令

应用模式	应用串口	备份模式	指令
集成串口模式	主串口	进入	AT+QGNSSC=0
		退出	AT+QGNSSC=1

备注

GSM 部分正常开机状态下, GNSS 部分备份模式可以使用。

3.4 电源供电

3.4.1 电源特性

在 GSM 模组的应用设计中,电源设计是很重要的一部分。由于 GSM 发射时每隔 4.615ms 会有一个持续 577 us(即 1/8 的 TDMA 周期)的突发脉冲。在突发脉冲阶段内,电源必须能够提供高的峰值电流,保证电压不会跌落到模组最低工作电压以下。

M6313 模组在最大发射功率等级下,峰值电流会达到 2A,这会引起 VBAT 端电压的跌落。为确保模块能够稳定正常工作,建议模块 VBAT 端的最大跌落电压不应超过 400mV。

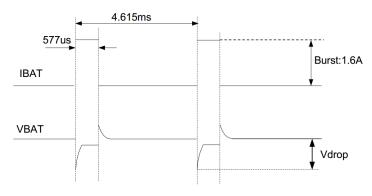
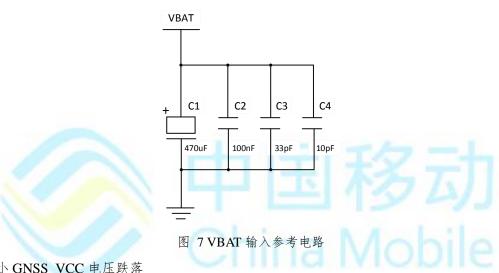


图 6 GSM 发射时的电压电流波形图



3.4.2 减少电压跌落

1、减小 VBAT 电压跌落

模块电源 VBAT 电压输入范围为 3.4V~4.2V。为保证 VBAT 电压不会跌落到 3.4V 以下,在 靠近模块 VBAT 输入端,建议并联一个低 ESR(ESR= 0.7Ω)的 470uF 以上的钽电容,以及 100nF、 33pF、10pF滤波电容, VBAT输入端参考电路如下图所示。

建议 VBAT 的 PCB 走线尽量短且足够宽,减小 VBAT 走线的等效阻抗,确保在最大发射功 率时大电流下不会产生太大的电压跌落。建议 VBAT 走线宽度不少于 2mm,并且走线越长,线 宽越宽。VBAT 输入参考电路如下图所示。

2、减小 GNSS_VCC 电压跌落

GNSS_VCC 的电压范围为 2.8V~4.3V。开机后,在卫星捕获过程中时, GNSS_VCC 需要提 供最大 150mA 的电流。因此, 建议在 GNSS_VCC 引脚附近并联 10uF 和 100nF 的电容进行滤 波,减小 GNSS_VCC 的电压跌落, GNSS_VCC 输入参考电路如下图所示。

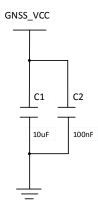
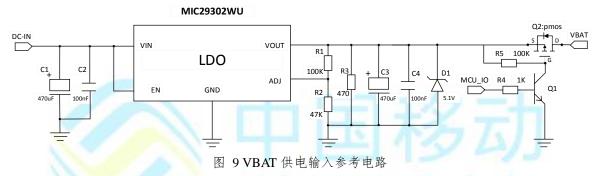


图 8 GNSS VCC 输入参考电路



3.4.3 供电参考电路

1、VABT 供电参考电路

电源设计对模块的供电至关重要,必须选择能够提供至少 2A 电流能力的电源。若输入电压跟模块的供电电压的压差不是很大,建议选择 LDO 进行降压。若输入输出之间存在比较大的压差,建议使用开关电源转换器。

下图是使用 5V 适配器供电的参考设计,采用了 Micrel 公司的 LDO,型号为 MIC29302WU。该 LDO 负载电流峰值到 3A,通过调整 R1/R2 的比例使其输出电压是 3.8V。为确保输出电源的稳定,建议在输出端预留一个稳压管,并且靠近模块 VBAT 管脚摆放。建议选择反向击穿电压为 5.1V,耗散功率为 1W 以上的稳压管。若需对电源输入进行切断,建议电源管理电路放在大电容后端,防止大电容放电过程中,电压波动对模组产生影响。

2、GNSS_VCC 供电参考电路

M6313 模组通过 AT 命令控制 GNSS_VCC_EN 引脚来使能 GNSS 部分的供电。GNSS 部分的电源由外部提供,建议使用 LDO 提供 3.3V 电压。下图是使用 5V 适配器供电的参考设计,采用了 SGM 公司的 LDO,型号为 SGM2019-ADJYN5G/TR,通过调整 R1/R2 的比例使其输出电压是 3.3V。

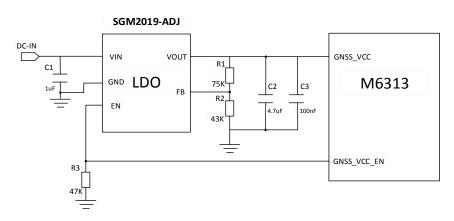


图 10 GNSS_VCC 供电输入参考电路

3, GNSS Backup Domain

GNSS Backup Domain 用于备份快速启动所需的必要信息和少量用户配置参数。GNSS Backup Domain 由 GSM 部分供电, 当 VBAT 持续供电且 GSM 部分正常开机时, GNSS 部分自动进入 Backup 模式 (VRTC 保持悬空), 电路框图如下图所示。

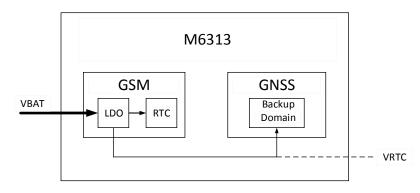


图 11 GNSS Backup Domain 电路框图

3.5 开关机

3.5.1 开机

M6313 模组是在关机状态通过拉低 PWRKEY 引脚 2s 再释放至高电平来开机。 方法 1: 推荐使用开集驱动电路来控制 PWRKEY 引脚,下图为参考电路:

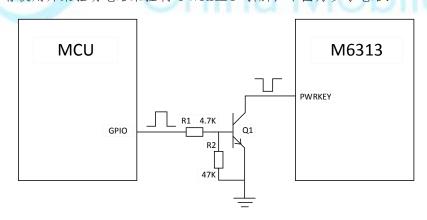


图 12 开集驱动电路开机参考电路

方法 2: 直接使用一个按钮开关控制 PWRKEY 引脚。手指在按键时可能会产生静电,因此按钮附近需放置一个 TVS 用以 ESD 保护。下图为参考电路:

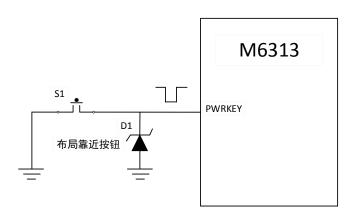


图 13 按钮开机参考电路

方法 3: 直接将 PWRKEY 接地,实现上电即开机,在业务处理完成后直接断电关机(请保证模组处于空闲状态后断电)。

开机后, GSM 部分正常工作, 可发送 AT+QGNSSC=1 使能 GNSS 部分的供电, 此时 GNSS 部分进入全功能工作模式。

3.5.2 关机

M6313 模组有以下几种关机方式:

- 软件正常关机: 使用 AT 命令;
- 硬件关机: 开机状态拉低 PWRKEY 引脚 1s 再释放至高电平来关机;
- 断电关机:模组处理完业务后(处于空闲状态)直接断电关机;
- 异常关机: 电压低于 VBAT 正常供电范围低值 (3.4V)。

1、软件正常关机

在模组开机状态下,支持 AT 指令关机。通过主串口输入指令 AT+CPOF 可使模组关机,包括从网络注销并保存重要数据。

2、硬件关机

在模组开机状态下, 拉低 PWRKEY 引脚 1s 再释放至高电平可使模组关机。

3、断电关机

模组处理完业务后处于空闲状态时,保存好重要数据,可以直接断电关机。推荐使用 AT 命令或 PWRKEY 引脚关机后再断电。

4、异常关机

模组 VBAT 的供电范围为 3.4~4.2V, 当供电电压低于 3.4V 时, 模组将自动关机。

备注

关机状态下, 在其他外设未关闭时, 请勿通过模组接口电平作为判断模组状态的依据。

3.6 串口

模组共提供四个串口: 主串口,调试串口,辅助串口,GNSS串口。

波特率支持范围: 主串口 4800bps~115200bps, 默认为 115200bps; 调试串口 921600bps; 辅助串口 4800bps~115200bps, 默认为 9600bps; GNSS 串口 4800bps~921600bps, 默认为 9600bps。

表 8 串口逻辑电平

参数	最小值	最大值	单位
VIL	0	0.25×VDD_EXT	V
VIH	0.75×VDD_EXT	VDD_EXT+0.3	V
VOL	0	0.15×VDD_EXT	V
VOH	0.85×VDD_EXT	VDD_EXT	V

表 9 串口引脚定义

	引脚号	引脚名	I/O	描述
	33	RXD	I	模组接收数据
	34	TXD	О	模组发送数据
	35	RI	О	输出振铃指示
主串口	36	DCD	О	输出载波检测
	37	DTR	I	数据终端准备完成
	38	CTS	О	发送清除
	39	RTS	I	发送请求
	引脚号	引脚名	I/O	描述
调试串口	30	DBG_RXD	I	调试串口接收
	29	DBG_TXD	O	调试串口发送

	引脚号	引脚名	I/O	描述
辅助串口	24	RXD_AUX	I	辅助串口接收
	25	TXD_AUX	О	辅助串口发送
	引脚号	引脚名	I/O	描述
GNSS 串口	23	GNSS_RXD	I	GNSS 串口接收
	22	GNSS_TXD	О	GNSS 串口发送

3.6.1 主串口

1、主串口特点

- 七线串口
- 8个数据位,无奇偶校验,一个停止位;
- 用于传送 AT 指令, GPRS 数据传输, 与外界进行通信;
- 模组支持固定波特率和自适应波特率,默认波特率为115200 bps;
- 固定波特率支持的范围为: 4800/9600/14400/19200/28800/33600/38400/57600/115200 bps;
- 自适应波特率需通过 AT+IPR=0 进行设定,只识别大写 AT,支持以下波特率: 4800/9600/19200/38400/57600/115200 bps.

2、主串口参考设计

三线制串口连接方式如下:

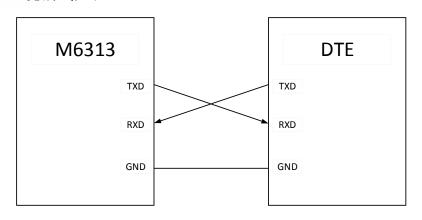


图 14 三线制主串口连接图

带硬件流控串口连接方式如下:

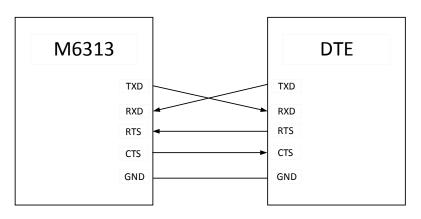
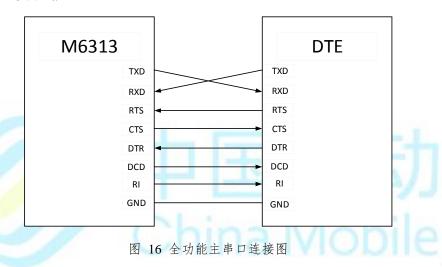



图 15 带硬件流控主串口连接图

全功能串口连接方式如下:

备注

模组内部将RTS与CTS交换,因此模组RTS与CTS采用直连的方式与DTE连接。

3.6.2 调试串口

- 1、调试串口特点
 - 仅用于软件调试和升级;
 - 串口会自动向外面输出 Log 信息, Log 信息需要专门的软件抓取解析;
 - 默认波特率为 921600 bps。
- 2、调试串口参考设计

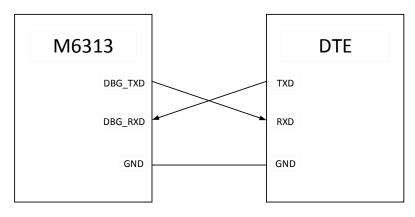


图 17 调试串口连接图

3.6.3 辅助串口与 GNSS 串口

1、GNSS 独立串口方案

在 GNSS 独立串口方案中,模组 GNSS 串口与 DTE 相连,辅助串口悬空。

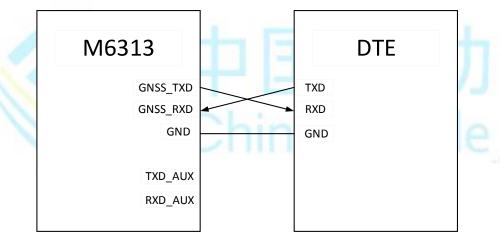


图 18 GNSS 独立串口方案连接图

2、GNSS 集成串口方案

在 GNSS 独立串口方案中,模组 GNSS 串口与辅助串口相连。

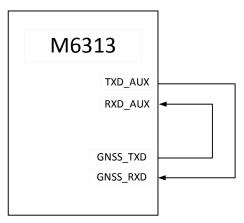


图 19 GNSS 集成串口方案连接图

3.6.4 串口应用

在串口应用中,需注意接口的电平是否匹配,可通过电平转换电路实现串口通信。

以模组串口电平为 2.8V 为例,如果 DTE 串口电平为 3.3V ,电平匹配电路参考设计如图 20。 如果 DTE 串口电平是 3V,则根据分压原则,将电阻 5.6K 改为 10K。



图 203.3V 串口电平转换

如果 DTE 串口电平为 3.3V 或 3V, 还可以采用二极管隔离电路进行串口连接, 其中二极管建议使用肖特基二极管(请确保 DTE 设备串口的 VIHmin 小于 2.8V 与二极管压降的差值), 如下图所示:

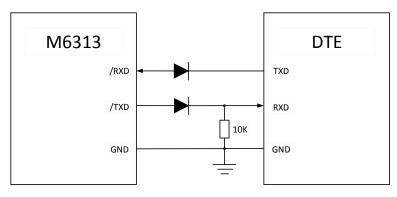


图 21 二极管隔离电路

如果 DTE 串口电平为 5V, 可采用如下电路:

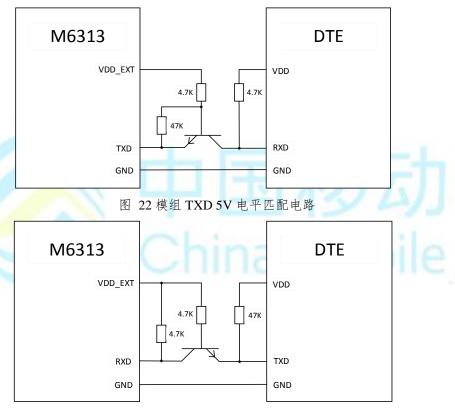


图 23 模组 RXD 5V 电平匹配电路

如果使用 RS232 接口与 PC 进行通信,则需在接口和模组之间加入 RS232 电平转换芯片。

备注

当模组处于关机状态时,与模组串口连接的设备接口建议处于关断或高阻态,防止电平反灌造成模组接口电平异常。

3.7 SIM 卡接口

M6313 模组有两组 SIM 卡接口,符合 ISO7618-3 标准,支持 1.8V/3V SIM 卡,一种软件版本只支持一个固定的 SIM 卡接口,默认支持 SIM1 接口。

表 10 SIM 接口引脚定义

	引脚号	引脚名	I/O	描述
	18	SIM1_VDD	О	SIM 卡 1 供电电压
				自适应: 1.8V/3V
	19	SIM1_CLK	О	SIM 卡 1 时钟线
SIM1	20	SIM1_RST	О	SIM 卡 1 复位线
	21	SIM1_DATA	Ю	SIM 卡 1 数据线
				内部已上拉
	37	SIM1_PRESENCE	I	SIM 卡 1 检测线
	16	SIM_GND	-	地
	引脚号	引脚名	I/O	描述
3/2	13	SIM2_VDD	О	SIM 卡 2 供电电压
				自适应: 1.8V/3V
	10	SIM2_CLK	O	SIM 卡 2 时钟线
SIM2	12	SIM2_RST	О	SIM 卡 2 复位线
	11	SIM2_DATA	Ю	SIM 卡 2 数据线
				内部已上拉
	16	SIM_GND	-	地

SIM1 接口参考电路如图 21 所示, SIM1_PRESENCE 不用请悬空; SIM2 接口参考电路如图 22 所示。

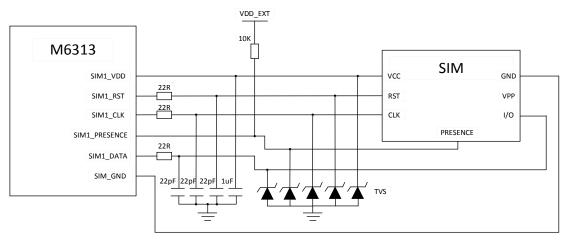


图 24 SIM1 接口参考电路

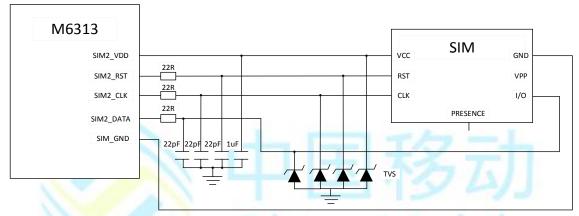


图 25 SIM2 接口参考电路

为使 SIM 卡有良好的性能和可靠性,对电路设计有以下建议:

- SIM 卡座靠近模组摆放,信号线布线长度尽量不超过 200mm。
- SIM 卡信号线远离射频线、高速信号线以及电源线。
- SIM卡座的地与SIM_GND的连线短而粗;SIM_VDD和SIM_GND走线宽度大于0.5mm; SIM_VDD的旁路电容靠近引脚摆放。
- SIM CLK 和 SIM DATA 布线不能太近,在两线间增加地屏蔽。
- 建议在 SIM 卡各引脚增加 TVS 管, TVS 管寄生电容不大于 50pF; 信号线走线应先经过 TVS 管再进入模组。
- 在信号线上串联电阻抑制杂散干扰,并联电容去除射频干扰。
- 模组内部 SIM_DATA 已做上拉,若走线过长,可靠近卡座增加上拉电阻,提高驱动能力。
- SIM1_PRESENCE 可用在含检测引脚的 SIM 卡座上, 当不插卡时, 该引脚为低电平; 插卡时, 该引脚为高电平。

3.8 SD 接口 (TBD)

3.9 ADC 接口

M6313模组提供一路外部 ADC 接口,可通过 AT 命令读取输入电压,输入电压范围为 0~1.75V。 为防止电源和射频信号的干扰,建议 ADC 布线时上下左右包地。

表 11 ADC 接口引脚定义

引脚号	引脚名	Ю	描述
6	ADC	I	模数转换器接口

表 12 ADC 特性

	最小	典型	最大	単位
电压范围	0		1.75	V
ADC 分辨率		10		bits
ADC 精度		1.7	TS	mV

3.10 音频接口

M6313 模组提供了一路模拟音频输入接口(MIC)和两路模拟音频输出接口(SPK/LOUDSPK),为用户不同的音频应用提供便利。

表 13 音频接口引脚定义

引脚号	引脚名	Ю	描述
1	MIC_P	AI	麦克输入正
2	MIC_N	AI	麦克输入负
3	SPK_P	AO	听筒输出正
4	SPK_N	AO	听筒输出负
54	LOUDSPK_P	AO	喇叭输出正
53	LOUDSPK_N	AO	喇叭输出负

MIC 通道用作麦克风的差分输入,麦克风建议选择驻极体麦克风。

SPK 通道用作听筒的差分输出; LOUDSPK 通道用作扬声器的差分输出, 最大可驱动 1W。 如果使用音频功能, 请注意以下的几点:

- 供电的瞬变和损耗;
- 天线辐射杂散;
- 数字逻辑开关的切换噪声。

很多情况下,音频容易被来自 GSM 的发送时隙噪声所干扰。为了尽量减少噪声,提高音频质量,有如下几点建议:

- 音频 PCB 走线尽量远离天线;
- 音频电路中使用射频滤波电容;
- 音频信号线不要走靠近数字信号;
- 音频走线尽量包地或者其他屏蔽处理,差分音频必须遵循差分信号的布线规则。

1、麦克风接口参考电路

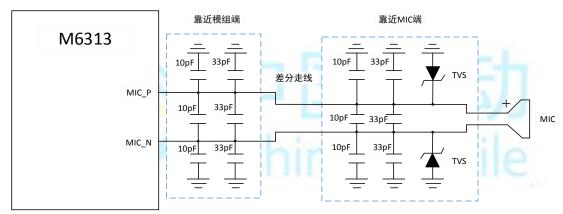


图 26 麦克风接口参考电路

2、听筒接口参考电路

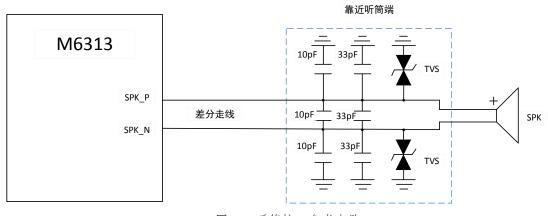


图 27 听筒接口参考电路

3、扬声器接口参考电路

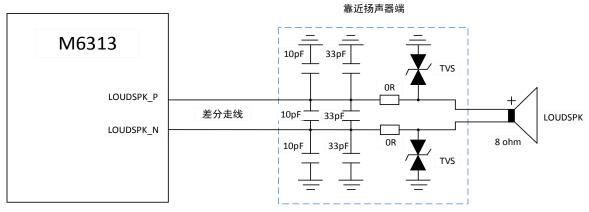


图 28 扬声器接口参考电路

3.11 网络状态指示接口

M6313 模组提供一路网络状态指示接口,连接 LED 灯可以指示网络的状态,参考电路如下图所示,图中电阻阻值根据 LED 额定电流和导通电压确定。

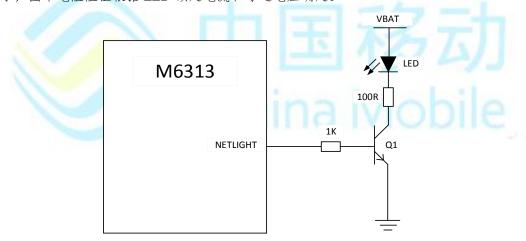


图 29 网络状态指示接口参考电路

表 14 网络状态指示对应表

NETLIGHT 高低电平状态	模组工作状态	
持续低电平(灯灭)	模组没有运行	
高电平 50ms (灯亮) / 低电平 1000ms (灯灭)	模组未注册到网络(闪烁)	
高电平 50ms (灯亮) / 低电平 2000ms (灯灭)	模组注册到网络(慢闪)	
高电平 50ms (灯亮) / 低电平 500ms (灯灭)	GPRS 数据传输通讯(快闪)	

4 天线接口

4.1 GSM 天线接口

M6313 模组提供了 GSM 天线接口 RF_ANT。

表 15 GSM 天线接口引脚定义

引脚号	引脚名	Ю	描述
40	GND		地
41	RF_ANT	Ю	GSM 天线接口
42	GND		地

4.1.1 射频参考电路

对于天线接口的外围电路设计,为了能够更好地调节射频性能,建议预留匹配电路。天线连接参考电路如下图所示,其中 C1, C2 缺省不贴,只贴 0 欧姆 R1 电阻。

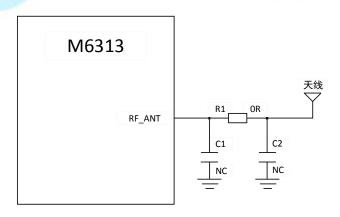


图 30 GSM 天线接口参考电路

M6313 模组提供了一个 RF_ANT 焊盘接口供连接外部天线。从该焊盘到天线连接器间射频 走线的特性阻抗要控制在 50 欧姆左右,且走线尽可能短。为了获得更好的射频性能, RF_ANT 接口两侧各有两个接地焊盘。

为了最小化 RF 走线或者 RF 线缆上的损耗,必须谨慎设计。建议插入损耗必须满足以下条件:

- GSM850/EGSM900 < 1dB
- DCS1800/PCS1900 < 1.5dB

4.1.2 RF 输出功率

表 16 RF 传导功率

频率	最大	最小
GSM850	33dBm ±2dB	5dBm±5dB
EGSM900	33dBm ±2dB	5dBm±5dB
DCS1800	30dBm ±2dB	0dBm±5dB
PCS1900	30dBm ±2dB	0dBm±5dB

备注

在 GPRS 网络 4 时隙发送模式下,最大输出功率减小 2.5dB。该设计符合 3GPP TS 51.010-1 中 13.16 节所述的 GSM 规范。

4.1.3 RF 接收灵敏度

表 17 RF 传导灵敏度

频率	接收灵敏度
GSM850	<-108.5 dBm
EGSM900	<-108.5 dBm
DCS1800	<-108.5 dBm
PCS1900	<-108.5 dBm

4.1.4 工作频率

表 18 GSM 工作频率

频率	接收频率	发射频率	绝对射频频道号 ARFCH
GSM850	869~894 MHz	824~849 MHz	128~251
EGSM900	925~960 MHz	880~915 MHz	0~124; 975~1023
DCS1800	1805~1880 MHz	1710~1785 MHz	512~885
PCS1900	1930~1990 MHz	1850~1910 MHz	512~810

4.1.5 推荐焊接方式

如果连接外置天线的射频连接器是通过焊接方式与模块相连的,请务必注意连接线的剥线方式及焊接方法,尤其是地要焊接充分,请按照正确的焊接方式进行操作,以避免因焊接不良引起线损增大。

4.2 GNSS 天线接口

M6313 模组提供了GNSS 天线接口GPS ANT。

表 19 GNSS 天线接口引脚定义

引脚号	引脚名	Ю	描述
14	GND		地
15	GNSS_ANT	IO	GNSS 天线接口

4.2.1 天线规格

M6313 模组可通过天线接收 GPS/BDS 卫星信号,下表为推荐的天线规格。

表 20 GNSS 天线规格

天线类型	规范
	GPS 频率: 1575±2 MHz
	BDS 频率: 1561.098±2 MHz

	驻波: <2 (Typ.)	
	极化:右旋圆极化或线性极化	
有源天线	噪声系数: <1.5 dB	
	增益 (天线): >-2 dBi	
	增益 (内置 LNA): >20 dB (Typ.)	
	总增益: >18 dBi(Typ.)	
	GPS 频率: 1575±2 MHz	
	BDS 频率: 1561.098±2 MHz	
无源天线	驻波: <2 (Typ.)	
	极化:右旋圆极化或线性极化	
	增益: >0 dBi	

4.2.2 有源天线参考设计

有源天线通过 GNSS_VCC 供电,电压范围为 2.8~4.3V,典型值为 3.3V。天线连接参考电路如下图所示,预留匹配电路,其中 C1, C2 缺省不贴,只贴 0 欧姆 R1 电阻。电感 L1 对 RF信号起阻塞作用,用于隔离 RF信号和 GNSS_VCC,建议 L1 的值≥47nH; R2 起保护作用。

有源天线推荐: 国巨 YAGEO- ANT4937EM5MB15BDS; 佳邦 GPSBNSS10D-S3-0040-A。

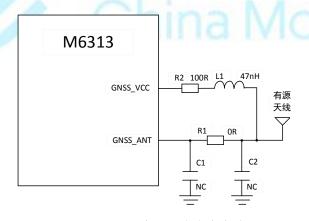


图 31 GNSS 有源天线参考电路

4.2.3 无源天线参考设计

无源天线连接参考电路如下图所示, 其中 C1, C2 缺省不贴, 只贴 0 欧姆 R1 电阻。

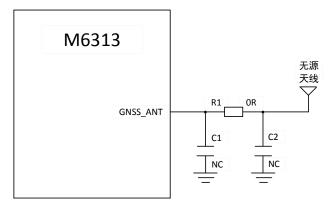


图 32 GNSS 无源天线参考电路

5 电气性能

5.1 绝对最大值

下表所示是模组数字、模拟管脚的电源供电电压和电流的最大耐受值。

表 21 绝对最大值

参数	最小	最大	单位
VBAT	-0.3	4.5	V
GNSS_VCC	-0.3	4.3	V
电源供电峰值电流	0	2	A
电源供电平均电流(TDMA 一帧时间)	0	0.7	A
数字管脚处电压	-0.3	3.3	V
模拟管脚处电压	-0.3	3	V
关机模式下数字/模拟管脚处电压	-0.25	0.25	V
	nina	Ma	hila
5.2 工作温度			

5.2 工作温度

下表所示为模组工作温度。

表 22 模组工作温度

参数	最小	典型	最大	单位
正常工作温度	-40	25	+85	$^{\circ}$
存储温度	-45		+90	${\mathbb C}$

5.3 电源额定值

表 23 GSM 部分电源额定值(GNSS 部分关闭)

参数	描述	条件	最小	典型	最大	单位

	供电电压	电压必须在该范围之内,包括电	3.3	3.8	4.2	V
VBAT		压跌落, 纹波和尖峰时				
	突发发射时	GSM850 和 EGSM900 最大功率			400	mV
	的电压跌落	等级时				
		关机模式		200		uA
		待机模式				
		BS_PA_MFRMS=9		12.19		mA
		BS_PA_MFRMS=5		12.24		mA
		BS_PA_MFRMS=2		12.22		mA
		休眠模式				
I _{VBAT}	平均供电电	BS_PA_MFRMS=9		1.10		mA
	流	BS_PA_MFRMS=5		1.18		mA
		BS_PA_MFRMS=2		1.51		mA
		数传模式, GPRS(1 收, 1 发)				
		GSM850/EGSM 900 ^[1]		177/174		mA
		DCS1800/PCS1900 ^[2]	75	163/164		mA
		数传模式, GPRS(1 收, 2 发)				
		GSM850/EGSM 900 ^[1]	п. л	251/239		mA
		DCS1800/PCS1900 ^[2]	- V	237/218	IIe	mA
		数传模式, GPRS(1 收, 4 发)				
		GSM850/EGSM 900 ^[1]		290/288		mA
		DCS1800/PCS1900 ^[2]		243/227		mA
	峰值电流	GSM850 和 EGSM900 最大功率		1.6	1.8	A
	(每个发射时	等级时				
	隙下)					

备注

- 1、[1] 功率等级 5; [2] 功率等级 0
- 2、上表的测试数据为 GNSS 部分完全关闭时单片模组的实验室数据,量产模组的测试数据可能会存在差异。

表 24 GNSS 部分电源额定值

参数	描述	条件	最小	典型	最大	单位
GNSS_VCC	供电电压	电压必须在该范围之内,包括电	2.8	3.3	4.3	V
		压跌落, 纹波和尖峰时				
I _{VCCP}	峰值电流	GNSS_VCC=3.3V			150	mA

5.4 耗流

模组耗流值如下表所示。

表 25 GSM 部分耗流 (GNSS 部分关闭)

水 25 USIVI 即力 和加(UIV	
条件	耗流
GPRS 数据传输	
数据传输模式, GPRS (1 W	t,1发)CLASS 12
GSM 850	@功率等级 5, 典型值 177 mA
	@功率等级 10, 典型值 92 mA
	@功率等级 15, 典型值 67 mA
EGSM 900	@功率等级 5, 典型值 174 mA
	@功率等级 10, 典型值 91 mA
	@功率等级 15, 典型值 67 mA
DCS 1800	@功率等级 0, 典型值 163 mA
	@功率等级 5, 典型值 83 mA
	@功率等级 10, 典型值 65 mA
PCS 1900	@功率等级 0, 典型值 164 mA
	@功率等级 5, 典型值 81 mA
	@功率等级 10, 典型值 65 mA
数据传输模式, GPRS (1 W	t, 2 发) CLASS 12
GSM 850	@功率等级 5, 典型值 251 mA
	@功率等级 10, 典型值 135 mA
	@功率等级 15, 典型值 85 mA
EGSM 900	@功率等级 5, 典型值 239 mA
	@功率等级 10, 典型值 133 mA
	@功率等级 15, 典型值 85 mA
DCS 1800	@功率等级 0, 典型值 237 mA
	@功率等级 5, 典型值 115 mA
	@功率等级 10, 典型值 80 mA

PCS 1900	@功率等级 0, 典型值 218 mA
	@功率等级 5, 典型值 111 mA
	@功率等级 10, 典型值 79 mA
数据传输模式, GPRS (1 以	c, 4 发)CLASS 12
GSM 850	@功率等级 5, 典型值 290 mA
	@功率等级 10, 典型值 219 mA
	@功率等级 15, 典型值 125 mA
EGSM 900	@功率等级 5, 典型值 288 mA
	@功率等级 10, 典型值 213 mA
	@功率等级 15, 典型值 125 mA
DCS 1800	@功率等级 0, 典型值 243 mA
	@功率等级 5, 典型值 182 mA
	@功率等级 10, 典型值 113 mA
PCS 1900	@功率等级 0, 典型值 227 mA
	@功率等级 5, 典型值 175 mA
	@功率等级 10, 典型值 112 mA

5.5 静电防护

在模组应用中,由于人体静电,微电子间带电摩擦等产生的静电,通过各种途径放电给模组,可能会对模组造成一定的损坏,所以 ESD 保护必须要重视,不管是在研发、生产组装、测试等过程,尤其在产品设计中,都应采取防 ESD 保护措施。如电路设计在接口处或易受 ESD 点增加 ESD 保护,生产中佩戴防静电手套等。

下表为模块重点 PIN 脚的 ESD 耐受电压情况。

表 26 ESD 性能参数 (温度: 25℃, 湿度: 45%)

测试点	接触放电	空气放电
VBAT, GND	±5KV	±10KV
RF	±5KV	±10KV
TXD, RXD		
GNSS_TXD	±2KV	±4KV
GNSS_RXD		
Others	±0.5KV	±1KV

6 机械尺寸

6.1 模组尺寸

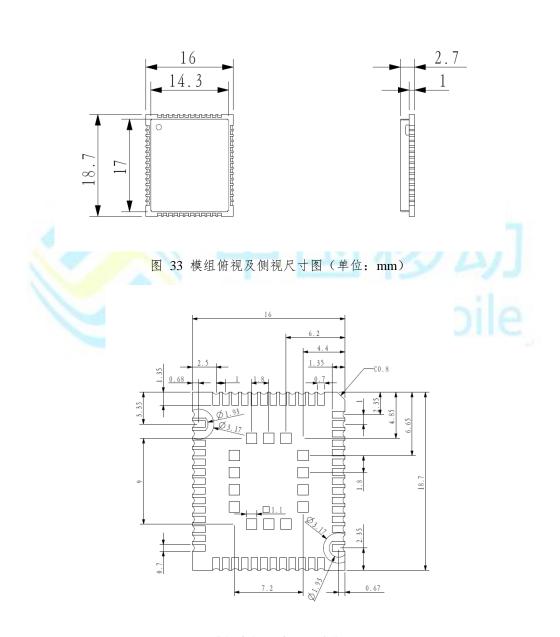


图 34 模组底层尺寸图 (单位: mm)

6.2 推荐封装

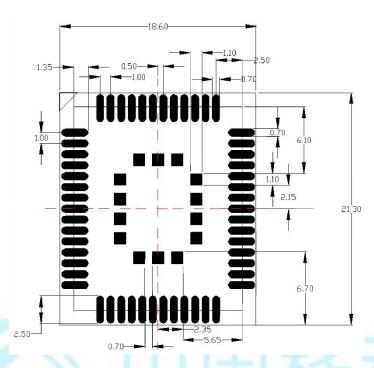


图 35 推荐封装(单位: mm)

6.3 模组视图

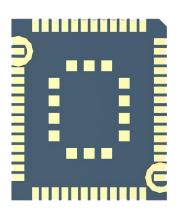


图 36 模组顶视及俯视图

7 存储、生产和包装

7.1 存储

M6313 模组以真空密封袋的形式出货。模组的存储需遵循如下条件:

- (1) 环境温度低于 40 摄氏度,空气湿度小于 90%情况下,模组可在真空密封袋中存放 12 个月。
- (2) 当真空密封袋打开后,若满足以下条件,模组可直接进行回流焊或其它高温流程:
 - ▶ 模组环境温度低于30摄氏度,空气湿度小于60%,工厂在72小时以内完成贴片。
 - ▶ 空气湿度小于 10%
- (3) 若模组处于如下条件,需要在贴片前进行烘烤:
 - ▶ 当环境温度为23摄氏度(允许上下5摄氏度的波动)时,湿度指示卡显示湿度 大于10%
 - ▶ 当真空密封袋打开后,模块环境温度低于30摄氏度,空气湿度小于60%,但工厂未能在72小时以内完成贴片
 - ▶ 当真空密封袋打开后,模块存储空气湿度大于 10% 如果模块需要烘烤,请在 125 摄氏度下(允许上下5 摄氏度的波动)烘烤 48 小时。

备注

模组的包装无法承受如此高温 (125℃),在模组烘烤之前,请移除模组包装。如果只需要短时间的烘烤,请参考 IPC/JEDECJ-STD-033 规范。

7.2 生产焊接

用印刷刮板在网板上印刷锡膏, 使锡膏通过网板开口漏印到 PCB 上, 印刷刮板力度需调整合适, 为保证模块印膏质量, M6313 模组焊盘部分对应的钢网厚度应为 0.23mm。

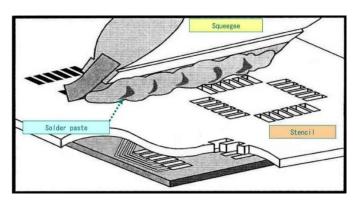


图 37 印膏图

为避免模块反复受热损伤,建议客户 PCB 板第一面完成回流焊后再贴中移物联网模块。推荐的炉温曲线图如下图所示:

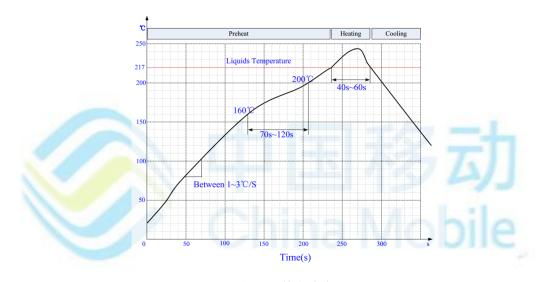


图 38 炉温曲线

7.3 包装

M6313 模组用卷带包装,并用真空密封袋将其封装。 每个卷带包含 250 个 M6313 模组,卷 带直径 330 毫米。

表 27 包装规格

模块名称	量产最小订单	最小箱包装(250pcs)	整箱包装(250×4=1000pcs)
M6313	250pcs	体积: 370×350×56mm	体积: 380×250×365mm
		净重: 0.88kg	净重: 3.53kg
		毛重: 1.72kg	毛重: 7.20kg

8 附录 A 参考文档及术语缩写

表 28 参考文档

序号	文档名称	备注
1	M6313 AT 命令用户使用手册	AT 命令使用手册
2	M6313_reference design	参考设计电路图

表 29 术语缩写

缩写	描述
ARP	Antenna Reference Point
BER	Bit Error Rate
BTS	Base Transceiver Station
СНАР	Challenge Handshake Authentication Protocol
CS	Coding Scheme
CSD	Circuit Switched Data
CTS	Clear To Send
DRX	Discontinuous Reception
DCE	Data Communications Equipment (typically module)
DTE	Data Terminal Equipment (typically computer, external controller)
DTR	Data Terminal Ready
DTX	Discontinuous Transmission
PSM	Power Save Mode
EMC	Electromagnetic Compatibility
ESD	Electrostatic Discharge
GMSK	Gaussian Minimum Shift Keying
I/O	Input/Output
IMEI	International Mobile Equipment Identity
Imax	Maximum Load Current

Inorm	Normal Current
kbps	Kilo Bits Per Second
LED	Light Emitting Diode
МО	Mobile Originated
MS	Mobile Station (GSM engine)
MT	Mobile Terminated
PAP	Password Authentication Protocol
РВССН	Packet Switched Broadcast Control Channel
PCB	Printed Circuit Board
PDU	Protocol Data Unit
PPP	Point-to-Point Protocol
RF	Radio Frequency
RMS	Root Mean Square (value)
RTC	Real Time Clock
RX	Receive Direction
SIM	Subscriber Identification Module
SMS	Short Message Service
TDMA	Time Division Multiple Access
TE	Terminal Equipment
TX	Transmitting Direction
UART	Universal Asynchronous Receiver &Transmitter
URC	Unsolicited Result Code
USSD	Unstructured Supplementary Service Data
VSWR	Voltage Standing Wave Ratio
Vmax	Maximum Voltage Value
Vnorm	Normal Voltage Value
Vmin	Minimum Voltage Value
VIHmax	Maximum Input High Level Voltage Value
VIHmin	Minimum Input High Level Voltage Value
VILmax	Maximum Input Low Level Voltage Value

VImax	Absolute Maximum Input Voltage Value
VImin	Absolute Minimum Input Voltage Value
VOHmax	Maximum Output High Level Voltage Value
VOHmin	Minimum Output High Level Voltage Value
VOLmax	Maximum Output Low Level Voltage Value
VOLmin	Minimum Output Low Level Voltage Value

9 附录 B GPRS 编码方案

在 GPRS 协议中, 用到四种编码方案。下表为它们的区别:

表 30 编码方案

方式	码速	USF	Pre-coded USF	Radio Block	BCS	Tail	Coded bits	Punctured bits	数据速率 Kb/s
CS-1	1/2	3	3	181	40	4	456	0	9.05
CS-2	2/3	3	6	268	16	4	588	132	13.4
CS-3	3/4	3	6	312	16	4	676	220	15.6
CS-4	1	3	12	428	16	-	456	-	21.4

如下图所示为 CS-1, CS-2 和 CS-3 射频协议块结构:

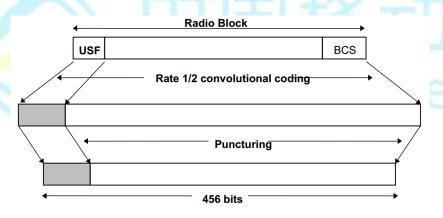


图 39 CS-1、CS-2 和 CS-3 射频协议块结构

下图所示为 CS-4 射频协议块结构:

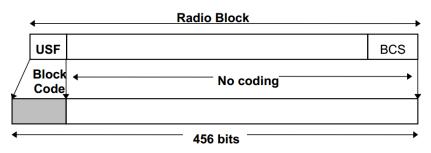


图 40 CS-4 射频协议块结构

10 附录 C GPRS 多时隙

GPRS 规范中,定义了 29 类 GPRS 多时隙模式提供给移动台使用。多时隙类定义了上行和下行的最大速率,表述为 3+1 或者 2+2: 第一个数字表示下行时隙数目,第二个数字表示上行时隙数目。Active slots 表示 GPRS 设备上行、下行通讯可以同时使用的总时隙数。

M6313 模组支持的不同等级的多时隙分配节选表如下表所示:

表 31 不同等级的多时隙分配节选表

Multislot Class	Downlink Slots	Uplink Slots	Active Slots
1	1	1	2
2	2	1	3
3	2	2	3
4	3	1	4
5	2	2	4
6	3	2	4
7	3	3	4
8	4	1	5
9	3	2	5
10	4	2	5
11	4	3	5
12	4	4	5